- CARLA Instrument Container Arrives at Arecibo Observatory03 Mar, 2021
- Arecibo Observatory Contributes to the Exploration of Black Holes Started by this Year’s Nobel Prize Winners in Physics19 Nov, 2020
- UCF Delivers Engineering Options for Arecibo Observatory (AO)16 Nov, 2020
- Management Update (October 12, 2020) by Director Eng. Francisco Cordova13 Oct, 2020
- Summer Student Assists in Development of Newest AO Facility01 Oct, 2020
- STAR Academy: Training the Next Generation of STEM Professionals 29 Sep, 2020
- Management Update (August 11, 2020) by Director Eng. Francisco Cordova29 Sep, 2020
- Management Update (August 28, 2020) by Director Eng. Francisco Cordova29 Sep, 2020
- Arecibo STAR Teachers29 Sep, 2020
- Hunting for the Mysterious Origins of Fast Radio Bursts28 Sep, 2020
- Girls Educating Girls 28 Sep, 2020
- Cassini Data Solves Mystery of Arecibo Radar Signals on Titan28 Sep, 2020
- How to Build an Asteroid11 Sep, 2020
- A Holistic Approach to Understanding Asteroids11 Sep, 2020
- Sharing the Connection: Arecibo’s Planetary Radar & NASA’s OSIRIS-REx Mission to Bennu10 Sep, 2020
- Analyzing Gravitational Fields Around Small Bodies in Support of Future Spacecraft Missions09 Sep, 2020
Analyzing Gravitational Fields Around Small Bodies in Support of Future Spacecraft Missions
Byadmin09 September 2020 Planetary

Planetary |
Understanding how the gravitational field around a comet or asteroid could affect an orbiting spacecraft is extremely important for the exploration of those objects.
In a recent publication of the Planetary and Space Science journal, AO scientist Dr. Flaviane Venditti and her team tested a new mapping technique to identify the orbits around comets and asteroids that are least affected by the objects’ gravity.
“Knowing which orbits would generate the least perturbation on a spacecraft could minimize the need for station-keeping maneuvers, lowering the cost and simplifying the mission logistics,” Dr. Venditti explained.
“Knowing which orbits would generate the least perturbation on a spacecraft could minimize the need for station-keeping maneuvers, lowering the cost and simplifying the mission logistics,” - Dr. Flaviane Venditti, Planetary Scientist at Arecibo Observatory
Importantly, the team developed these orbital maps using more realistic shapes for the asteroids and comets, rather than assuming they were spherical. Their analysis also assessed how easily a particle’s (or a spacecraft’s) orbit around the targets could be changed from its original path.
“The planetary radar observations we conduct with the Arecibo Observatory are highly complementary to these dynamical studies,” expressed Dr. Venditti. “One of the main goals of planetary radar is to determine the physical properties of asteroids, like their shapes and sizes. These properties are needed before we can computationally model the gravitational environment of those objects.”
Dr. Venditti concluded, “Thus, planetary radar observations and theoretical dynamical studies build on one another and are both critical for assisting with space exploration and mission planning.”
About Arecibo
The Arecibo Planetary Radar Program is funded by NASA’s Near-Earth Object Observations Program. The Arecibo Observatory is operated by the University of Central Florida (UCF) in partnership with Universidad Ana G. Mendez - Universidad Metropolitana and Yang Enterprises Inc., under a cooperative agreement with the National Science Foundation (NSF).
Article written by Dr. Tracy Becker - AO Collaborator / SwRI Research Scientist
Contact: tbecker@swri.edu |
Head of Planetary Radar team |
Keywords: arecibo, observatory, planetary, orbits, venditti, asteroid, gravitational, field, exploration