Technical Page

Proposal Type: Large
General Category: Terrestrial Aeronomy
Sub-Category: Radar
Observation Category: Thermosphere
Total Time Requested: 528 hours
Minimum Useful Time: 3 hours

Proposal Title: The Burnside Factor Revisited: A Model-Independent Ion Momentum Balance Study

ABSTRACT:

Studies of momentum exchange between the thermosphere and ionosphere have been used for decades to infer discrepancies between observation and theory in terms of the Burnside factor F. The lack of independent information regarding O density, however, introduces an ambiguity regarding the physical meaning of this “correction” factor: while it is usually intended to constrain theoretical estimates of the $O^+ - O$ momentum transfer cross section $Q_{O^+ - O}$, it could also reflect systematic bias in the (historically required) model specification of O density. We propose to incorporate O density and T_∞ values, derived empirically as solutions to the H^+ continuity balance equation, into the O^+ momentum balance equation to determine F and thus $Q_{O^+ - O}$. The project will use incoherent scatter measurements of the F-region and topside ionosphere in conjunction with passive optical observations of thermospheric winds (O 630.0 nm emission) and neutral H density (H 656.3 nm emission). This result has the potential to increase the accuracy of both future experimental studies — such as momentum or energy balance derivation of thermospheric density and temperature — as well as model calculations of thermospheric energetics or dynamics.

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>E-mail</th>
<th>Phone</th>
<th>Student</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waldrop S Lara</td>
<td>Univ. of Illinois at Urbana-Champaign</td>
<td>lwaldrop@uiuc.edu</td>
<td>217-244-5129</td>
<td>no</td>
</tr>
</tbody>
</table>

Remote Observing Request

- **X** Observer will travel to AO
- Remote Observing
- In Absentia (instructions to operator)

Instrument Setup

430 G 430 CH receiver 430 CH radar
Atmospheric Observation Instruments:
Tilt-Photometer Fabry-Perot

Special Equipment or setup: none

RFI Considerations

Frequency Ranges Planned