Proposal Identification No.: A2674 Date Received: 2011-Oct-03 18:02:44

Technical Page

Proposal Type: Regular
General Category: Astronomy
Sub-Category: Spectroscopy
Observation Category: Extragalactic
Total Time Requested: 25 Hours
Minimum Useful Time: 1 hour

Proposal Title: The faint LSB galaxy population in the nearby Lynx-Cancer void

ABSTRACT:

Dwarf galaxies in voids, where galaxy properties should be well preserved, are the best for studies of the mass function and the total number density of low-mass galaxies, which can be compared with cosmological galaxy formation model predictions. The large voids studied are distant, however, and can only be probed down to galaxy luminosities of $L^*/50$. To go much deeper, we constructed a sample down to $L^*/8000$ ($M_B=-12$) of 80 galaxies with known redshifts in the nearby Lynx-Cancer void ($D=18$ Mpc), 4 of which we found through NRT HI and BTA H-alpha observations. As a pilot program for Arecibo, we selected a hundred faint ($B=18.5-19.5$) candidate Lynx-Cancer void LSB galaxies without known redshifts, which if they reside in this void, have $M_B=-12$ to -14 mag. These data will improve our knowledge of the properties of the faintest void galaxies.

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>E-mail</th>
<th>Phone</th>
<th>Student</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simon A. Pustilnik</td>
<td>Special Astrophysical Observatory of RAS, Nizhnij</td>
<td>simon.pustilnik@gmail.com</td>
<td>+7-8782293385</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>Arkhyz, Karachai-Circassia 369167, Russia</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remote Observing Request

- Observer will travel to AO
- Remote Observing
- In Absentia (instructions to operator)

Instrument Setup

ALFA

Atmospheric Observation Instruments:
Special Equipment or setup: none

RFI Considerations

Frequency Ranges Planned

1350-1430

This proposal requires coordination with Punta Salinas radar within the band 1222-1381 MHz.